WPI Mathematical Sciences Department Ph.D. General Comprehensive Exam, MA 541 January, 2013

Show all your work. You may quote named results. Each part is worth 10 points.

- 1. Suppose X_1, \ldots, X_n is a random sample from a $U(\theta 1/2, \theta + 1/2)$ distribution. Characterize the set of all maximum likelihood estimators of θ .
- 2. Suppose k independent samples are taken and for each sample a test of $H_0: \theta = \theta_0$ is performed. Let T_i denote the test statistic and $\alpha(T_i)$ the p-value of the test from sample i. The statistic $V = -2\sum_{i=1}^k \ln[\alpha(T_i)]$ was recommended by Fisher as a way to combine all these tests into a single test. What is the distribution of V if H_0 is true?
- 3. A single observation X is taken from a distribution with density f. It is desired to test the hypotheses $H_0: f = f_0$ versus $H_a: f = f_a$, where f_0 is a U(0,1) pdf and f_a is the triangular pdf on [0,1]:

$$f_a(x) = 4x, \ 0 \le x < 1/2,$$

= $4 - 4x, \ 1/2 \le x \le 1.$

Construct a most powerful level α test of H_0 versus H_a .

- 4. Suppose that W is the UMVUE of an unknown parameter θ , and that it has moments of all orders. Show that W^k is a UMVUE of $E(W^k)$, where k is any positive integer.
- 5. Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from a population with mean μ and variance σ^2 , both of which are unknown. Let $T(\mathbf{X}) = \sum_{i=1}^n c_i X_i$ be an estimator of μ . Which values of the c_i give an unbiased estimator with minimum variance among all unbiased estimators of this form?
- 6. Consider a random sample from a bivariate normal distribution,

$$X_1, \ldots, X_n \sim N(\boldsymbol{\mu}, \Sigma),$$

where

$$\boldsymbol{X}_{i}' = [X_{1i}, X_{2i}], \ i = 1..., n, \ \boldsymbol{\mu}' = [\mu_{1}, \mu_{2}], \ \text{and} \ \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix}$$

- (a) Suppose $\mu_2 \neq 0$ and define $r = \mu_1/\mu_2$. Find the distribution of $\overline{X}_1 r\overline{X}_2$, where \overline{X}_1 and \overline{X}_2 are the sample means of the first and second variates, respectively.
- (b) Use the result in (a) to construct a level $1-\alpha$ confidence interval for r.
- 7. Suppose for each $n = 1, 2, ..., X_1, ..., X_n$ is a random sample from a distribution $f(x|\theta)$, $\theta \in \Theta \subset \mathbb{R}$. Let $l_n(\theta)$ denote the log likelihood. Assume the standard set of regularity conditions so that under $H_0: \theta = \theta_0$, the quantities below converge in the standard way.
 - (a) $n^{-1}l_n''(\theta_0)$ converges in probability. To what does it converge? Be as specific as you can.
 - (b) $\sqrt{n}(\hat{\theta}_n \theta_0)$ converges in distribution, where $\hat{\theta}_n$ is the MLE. To what distribution does it converge? Use the result from (a) and be as specific as you can.
 - (c) $n^{-1/2}l'_n(\theta_0)$ converges in distribution. To what distribution does it converge? Use the result from (a) and be as specific as you can.